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Contrast Pattern Mining With the T1D
Exchange Clinic Registry Reveals
Complex Phenotypic Factors and
Comorbidity Patterns Associated

With Familial Versus Sporadic

Type 1 Diabetes

Diabetes Care 2022;45:e56—e59 | https://doi.org/10.2337/dc21-2239

Scant attention has been paid to evalu-
ating differences in the prevalence of
comorbidities and diabetes-related com-
plications in familial versus sporadic type
1 diabetes (1). Knowledge gains in this
area could advance the development of
risk prediction tools and tailored inter-
ventions for preventing or delaying onset
of comorbidities or diabetes-related com-
plications in high-risk patient subgroups.

To address this gap, we applied a com-
putationally optimized, exploratory data
mining algorithm to the T1D Exchange
Clinic Registry (2). For the first time in
a large U.S-based cohort, we assessed
demographic and phenotypic factors and
comorbid conditions for associations
with familial (i.e., having an affected
first-degree relative) or sporadic (i.e.,
having no family history of type 1 dia-
betes) disease.

The T1D Exchange Clinic Registry is a
deidentified, publicly available data set
comprising 34,013 adult and pediatric
participants who received routine clinical
care at 83 U.S.-based endocrinology prac-
tices between July 2007 and April 2018
(3). We analyzed participants with a fam-
ily history of type 1 diabetes involving a
first-degree relative, i.e., father (n =
1,464), mother (n = 818), sibling/twin

(n = 1,882), and/or child (n = 228) (total n
= 3,941) or no family history of type 1
diabetes (n = 12,291). Excluding partici-
pants >50 years old resulted in a rela-
tively balanced distribution of age and
diabetes duration across both subgroups.

A contrast pattern mining algorithm
detects significant differences in the fre-
guencies of attributes across two patient
subgroups. We used our validated
algorithm to discover individual and
co-occurring characteristics that were
documented significantly more frequently
in familial versus sporadic type 1 diabe-
tes. Here, we refer to these characteris-
tics as “patterns” or “feature patterns.”
Our algorithm returns feature patterns
consisting of one, two, or three elements.
Individual elements are synonymous with
individual characteristics.

Metrics used in feature pattern analy-
sis include support, growth, and confi-
dence (4,5). Support is the proportion of
individuals in a subgroup who are associ-
ated with a given feature pattern. Growth
is a support ratio between subgroups.
Confidence corresponds to the statistical
concept of positive predictive value. We
used Fisher exact tests to calculate the
statistical significance of each pattern
(P < 0.05) and the Benjamini-Hochberg
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(BH) procedure to control for false discov-
ery (false discovery rate of 0.1).

Of 16,232 individuals who met inclu-
sion criteria, 24.3% (n = 3,941) had an
affected first-degree relative. Median
age of familial cases was 18 (interquar-
tile range [IQR] 15, 27) years; for spo-
radic cases, median age was 18 (IQR 15,
23) years (P = 0.05). Median diabetes
duration in familial cases was 10 (IQR 6,
16) years; in sporadic cases, median dia-
betes duration was 9 (IQR, 6, 14) years
(P < 0.001). Median age at diagnosis
was 8 (IQR 4, 12) years in both sub-
groups (P = 0.002). Mean (+ SD) hemo-
globin A;. (HbA,.) for familial cases was
8.4 * 1.3% (68.7 + 14.7 mmol/mol); for
sporadic cases, mean HbA;. was 8.3
+1.2% (66.72 + 13.2 mmol/mol) (P <
0.001).

We discovered 590 feature patterns
that met a minimum prevalence thresh-
old of 1% in at least one subgroup.
After controlling for false discovery, 265
patterns retained statistical significance.
These included 29 single-element pat-
terns, 103 two-element patterns, and
133 three-element patterns (Table 1).

Conditions that were significantly
enriched in familial type 1 diabetes
included hypertension, hyperlipidemia/
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Table 1—Continued

Confidence:

Growth:
nonenriched

Support:
nonenriched
subgroup (%)

Confidence:

Growth:
enriched

subgroup

Support:
enriched
subgroup (%)

nonenriched

Nonenriched

enriched
subgroup

Enriched
subgroup*

P value

subgroup

subgroup

subgroup

Feature pattern

RMV disorder and

4.78E-03

2.56 1.41 0.31 Sporadic 1.81 0.69 0.69

Familial

thyroid disorder

Two categories of results were used: 1) one-element feature patterns and 2) two- and three-element feature patterns. P values were obtained using Fisher exact tests. False discovery resulting from
multiple-hypothesis testing was controlled using the BH procedure (false discovery rate, 0.1). Results in both categories (i.e., one-element feature patterns and two- and three-element feature patterns)

are sorted by P value. Two- and three-element patterns selected for inclusion in this table met the following criteria: 1) confidence was increased relative to related one-element patterns, 2) pattern
growth in the enriched subgroup was =1.4, 3) pattern support in the enriched subgroup was =2.5, and 4) individual pattern elements previously retained significance (as one-element patterns) follow-

ing use of the BH procedure. ADHD, attention deficit/hyperactivity disorder. *Enriched subgroup is the subgroup in which the feature pattern was documented more frequently.

dyslipidemia, atherosclerosis, retinopathy/
maculopathy/vitreopathy (RMV), erectile
and sexual dysfunction, gastroesophageal
reflux disease, neuropathy, and nephropa-
thy. A higher proportion of individuals
with familial disease (vs. sporadic disease)
were non-Hispanic Black (6.3% vs. 4.1%).
Sporadic type 1 diabetes was more fre-
guently associated with the absence of
other medical conditions, Asian race, His-
panic ethnicity, and diagnosis at ages 5-9,
10-12, and 13-18 years.

Hyperlipidemia/dyslipidemia and hyper-
tension, combined, were present for 7.0%
of familial cases but for only 4.4% of spo-
radic cases. Co-occurring RMV and hyper-
lipidemia/dyslipidemia were documented
for 5.0% of familial cases and for 3.1% of
sporadic cases.

In contrast to most earlier studies,
this study did not exclude patients diag-
nosed with type 1 diabetes as adults.
Across the two subgroups, the differ-
ence in median diabetes duration was
small (~1 year) and mean HbA,. was sim-
ilar, suggesting that the observed associa-
tions cannot be completely explained by
the small difference in diabetes duration
and HbA;.. An important limitation is that
the Registry does not identify whether
more than one participant originated
from the same family unit; therefore, indi-
vidual family units may be represented in
this analysis more than once.

This study of more than 16,200 indi-
viduals in the T1D Exchange Clinic Regis-
try is the largest study to date to
evaluate longitudinal health outcomes
in individuals with familial versus spo-
radic type 1 diabetes. Further research
is needed to validate the present results
in a large population-based cohort.
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